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Abstract

Living cells continually generate free radicals or reactive oxygen species (ROS) through the respiratory chain
during energetic metabolism. ROS can either be harmful or play important physiological roles in our body. Besides
being produced during normal cell metabolism there are numerous exogenous factors, such as irradiation by UV
light, X-rays, gamma-rays, and atmospheric pollutants which may lead to generation of ROS. Human body has
various intrinsic mechanisms to counteract oxidative stress by producing antioxidants, or through externally derived
foods and/or supplements. However whenever there is excess of free radicals their accumulation in the body
generates a phenomenon called oxidative stress. As we age, this oxidative and/or nitrosative damages elicit a
number of late-onset diseases after ROS/RNS accumulate to certain levels. The ROS/RNS-mediated late-onset
diseases can occur in any system of the body and may lead to clinical conditions such as cancer, arthritis
arteriosclerosis, and neurodegenerative diseases. Oxidative stress is marked with expression of specific biomarkers
whose specificity towards the various disease condition needs validation. In this review, we summarize the source,
balance, maintenance and physiological functions of ROS, and its toxic mechanisms underlying a number of
diseases and also the biomarkers implicated in selected human diseases.
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Introduction
Oxidative stress is defined as a disturbance in the equilibrium

between free radicals (FR), reactive oxygen species (ROS) and the
endogenous defense mechanisms [1]. It is the disturbance in the
balance between oxidant-antioxidant states which favours the
production of oxidant species [2]. Human body requires both oxidant
and antioxidant species for normal metabolism, signal transduction
and regulation of cellular functions. Therefore, each cell maintains a
condition of homeostasis between the oxidant and antioxidant species
[3,4]. Oxidative stress may lead to injury to all the important cellular
components like proteins, DNA and membrane lipids, which can
cause cell death. Oxidative stress has also implicated in various
physiological and pathological processes, including DNA damage,
proliferation, cell adhesion, and survival which has been validated by
several experimental and clinical data in large number of pathological
states as well as aging (Figure 1) [2,3].

The broad definition of the ROS is oxygen-containing, reactive
chemical species. Up to 1–3% of the pulmonary intake of oxygen by
humans is converted into ROS [5]. But it has to be emphasized that
ROS and RNS are both produced in a well regulated manner to help
maintain homeostasis at the cellular level in the normal healthy tissues
and play an important role as signaling molecules. Most cells can
produce superoxide (O2•-), hydrogen peroxide (H2O2) and nitric
oxide [NO] when required. Free radicals have several beneficial roles
which can be enumerated as:

1. Generation of ATP (universal energy currency) from ADP in the
mitochondria: oxidative phosphorylation

2. Detoxification of xenobiotics by Cytochrome P450 (oxidizing
enzymes)

3. Apoptosis of effete or defective cells

4. Killing of micro-organisms and cancer cells by macrophages and
cytotoxic lymphocytes

5. Oxygenases (eg. COX: cyclo-oxygenases, LOX: lipoxygenase) for
the generation of prostaglandins and leukotrienes, which have many
regulatory functions.

Figure 1: Oxidative Stress, disease and aging – Possible effects of
Oxidative Stress

Besides it has also been demonstrated earlier that ROS such as O2 •-
and H2O2 may act as second messengers and thus can regulate cellular
function [4].

Reactive oxygen species (ROS) include superoxide, hydroperoxyl,
hydroxyl, alkylperoxyl, alkoxyl, carbonate and carbondioxide radicals,
while hydrogen peroxide and ozone represent non-radical species
(Table 1) [3,5,6]. Nitrogen reactive species (RNS) can be divided into
radicals and non-radicals as well (Table 1). Various studies have
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demonstrated the role of reactive oxygen species in many degenerative
diseases, such as atherosclerosis, cancers, stroke, trauma, asthma, heart
attack, hyperoxia, arthritis, age pigments, cataract genesis, retinal
damage, dermatitis, liver injury, hepatitis, and periodontis (Figure 2)
[5,6].

Reactive Oxygen Species Reactive Nitrogen Species

Free Radicals
Other
Substances Free Radicals Other Substances

Superoxide anion
radical O2•−

Hydrogen
peroxide H2O2

Nitric oxide
radical NO•

Peroxynitrite ONOO
−

Hydroxyl radical
HO•

Hypochlorous
acid HOCl

Nitric dioxide
radical NO2• Nitrites NO2−

Alkoxyl radical RO• Ozone O3 Nitrates NO3−

Peroxyl radical
ROO•

Singlet oxygen
1O2 Nitrosyl NO+

Table 1: Summary of reactive oxygen and nitrogen species [5,6]

Figure 2: Oxidative stress-induced diseases in humans

Defence System against Free Radicals
Human body has natural antioxidant defence mechanism to

counteract the FR produced which when present at very low
concentrations compared with those of an oxidizable substrate,
significantly delays or prevents oxidation of that substrate" [7]. The
word oxidizable substrate includes almost everything (except H2O)
found in foods such as oil and fat [8]; in living tissues it includes
carbohydrates, lipids, proteins, and DNA [7]. There are two major
types of antioxidants:

• Synthetic antioxidants: which include the phenolic compounds
such as butylated hydroxyanisol (BHA), butylated hydroxytoluene
(BHT), propyl gallate (PG) and tertiary butyl hydroquinone (TBHQ)
which are largely used in the food industries to control the oxidation
and maintain the food quality [9].

• Natural antioxidants: are the ascorbates, ascorbic acid (Vitamin
C), tocopherols, α-tocopherol (Vitamin E), flavonoids (Vitamin P),
carotenoids and phenolic acids.

Antioxidants are able to neutralize free radicals at the levels of
prevention, interception as well as repair. Antioxidants can the stop
the formation of ROS for e.g. superoxide dismutase (SOD) catalyses
the dismutation of superoxide to H2O2 and catalase breaks it down to
water [10,11]. Interception of free radicals is mainly by radical
scavenging. At the repair and reconstitution level, mainly repair
enzymes are involved [10-12] which neutralise the free radicals.

Oxidative Damage to DNA, Lipids and Proteins
The concept of Oxidative stress as first elaborated by Sies et al, 1986

[13] is the ineffective management of free radicals such as ROS and
RNS by natural antioxidant defence mechanism thus describing the
relation between free radicals and disease (Figure 2). Free radicals
manily attack the cellular components viz. lipids, carbohydrates,
proteins and DNA (Figure 1)

Effect on lipids
Lipid components of membrane undergo peroxidation as a result of

action of free radicals. During Lipid peroxidation (LP) a large number
of toxic by products are also formed that behave as ‘second
messengers’. The damage caused by LP is highly detrimental to the
functioning of the cell [14]. Some of the products of LP such as
malondialdehyde (MDA), 4- hydroxynonenal (4-HNE), various 2-
alkenals and Isoprostanes are of toxicological interest [14].

Effect on carbohydrates
Carbohydrates are attacked by free radicals such as •OH which

randomly abstracts a hydrogen atom from one of the carbon atoms,
producing a carbon-centered radical. This phenomenon brings about
chain breaks in molecules like hyaluronic acid. Additionally
oxyradicals produced as a result of activation of neutrophils during
inflammation in the synovial fluid surrounding joints, lead to
rheumatoid arthritis.

Effect on proteins
Free radicals can cause direct damage to proteins which can directly

interfere with enzyme activity and the function of structural proteins.
Oxidation of proteins by ROS/RNS leads to production of stable as
well as reactive products such as protein hydroperoxides that can
further generate additional free radicals particularly upon interaction
with transition metal ions. Mostly these oxidised forms of proteins are
rapidly removed however their accumulation over a period of time can
contribute to the damage associated with ageing as well as various
diseases. Lipofuscin, an aggregate of peroxidized lipids and proteins
accumulates in lysosomes of aged cells and brain cells of patients with
Alzheimer’s disease [15].

Effect on DNA
Free radical attack causes several types of alterations in the DNA

such as fragmentation of DNA which in turn causes activation of the
poly (ADP-ribose) synthetase enzyme. This splits NAD+ to aid the
repair of DNA. In case of excessive damage NAD+ levels may become
completely depleted leading to cell death which may be by necrosis or
apoptosis depending on the type of cellular damage. Damage of cell
membrane or an organelle by free radicals makes it vulnerable which
may put the entire cell at risk.
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Mechanism References

DNA strand breaks [21]

Formation of DNA adducts (due to covalent
binding )

[21]

Formation of DNA-protein cross-links [21,22]

Formation of DNA interstrand cross-links [21]

Activation of oncogenes [23]

Inactivation of tumour suppressor genes [23]

DNA base modification and/or destruction [21,24]

Table 2: Possible mechanisms behind the induction of mutagenesis
and carcinogenesis

Oxidative Stress and Disease
Attack of free radicals on the critical cellular components such as

lipids carbohydrates, proteins and DNA have been implicated in
various pathological conditions such as cardiovascular disease, cancer,
neurological disorders, diabetes, ischemia/reperfusion, other diseases
and ageing (Figure 2) [16-19].

These diseases can be categorized into two groups: (i) the first
group involves diseases characterized by pro-oxidants shifting the
thiol/disulphide redox state and impairing glucose tolerance—the so-
called “mitochondrial oxidative stress” conditions (cancer and diabetes
mellitus); (ii) the second group involves disease characterised by
“inflammatory oxidative conditions” and enhanced activity of either
NAD[P]H oxidase (leading to atherosclerosis and chronic
inflammation) or xanthine oxidase-induced formation of ROS
(implicated in ischemia and reperfusion injury). The process of ageing
is largely due to the damaging consequence of free radical action (lipid
peroxidation, DNA damage, protein oxidation).

Association of oxidative/ nitrosative stress and acute and chronic
diseases have been shown by presence of validated biomarkers of
oxidative stress [16,20].

Oxidative stress and cancer
Cancer development in humans involves a complex process both at

the cellular and molecular levels which is mediated by various
endogenous and exogenous stimuli. Reactive species can induce
mutagenesis via plenty of possible mechanisms [21-24] (Table 2).
Besides carcinogens, radiations can bring about cancer initiation and
promotion as a result of free-radical oxidation which is largely in the
form of strand breaks in DNA. DNA strand breaks can be both single
and double stranded. The breaks are generally repaired, can result in
mutations that are heritable change in the DNA which can cause
cancer in somatic cells or malformations in the germ cells. Free
radicals involvement with tumor suppressor genes and proto-
oncogenes indicate their involvement in the development of different
human cancers [25]. Additionally lipid peroxidation which plays a key
role in controlling cell division, its end product

Malondialdehyde (MDA) due to its high cytotoxic and inhibitory
action on protective enzymes further acts as a tumor promoter or a co-
carcinogenic agent. This has been shown in some type of cancers such
as breast cancer [26]. Besides this oxidative stress may lead to

activation of vascular endothelial growth factor and may induce
angiogenesis which may further enhance malignancy [27-29].

Oxidative stress and cardiovascular diseases
Reactive oxygen species (ROS) function as signaling molecules 

regulating an array of processes in the cardiovascular system and 
contribute to a large extent in the maintenance of cardiovascular 
homeostasis [30]. Oxygen free radicals have been reported to play an 
important role in the pathogenesis of a number of cardiovascular 
diseases (CVDs) such as atherosclerosis, ischemia, hypertension, 
cardiomyopathy, cardiac hypertrophy and congestive heart failure by 
both in vivo and in vitro studies [31-35]. Potential sources of free 
radicals during ischemia and reperfusion have been identified in 
myocytes, vascular endothelium, and leukocytes. Injury to processes 
involved in regulation of the intracellular Ca2+ concentration may be a 
common mechanism underlying both free radical- induced and 
reperfusion abnormalities [36].

Oxidative stress and neurodegenerative diseases
Oxidative stress and free radical generation catalyzed by redox

metals have been shown to play pivotal role in regulating redox
reactions in vivo contributing RNS and ROS production which are the,
main culprits in neurodegeneration [37]. Mitochondrial (Mt)
dysfunctions, excitotoxicity and finally apoptosis are evident causes for
neurodegenerative diseases such as Parkinson’s disease (PD),
Alzheimer’s disease (AD), Multiple Sclerosis (MS) and Amyolotrophic
lateral sclerosis (ALS). Mitochondrial dysfunction includes respiratory
chain dysfunction and oxidative stress, reduced ATP production,
calcium dysregulation, mitochondrial permeability transition pore
opening, peturbation in mitochondrial dynamics, and deregulated
mitochondrial clearance [38]. The production of ß-amyloid, a toxic
peptide often found in Alzheimer’s patients’ brain, is due to oxidative
stress and plays an important role in the neurodegenerative processes
[39]. AD brains also show evidence of ROS mediated-injury; there is
an increase in levels of malondyaldehyde and 4-hydroxynonenal in
brain and cerebrospinal fluid of AD patients compared to controls
[40].

In Parkinson's disease the protein alpha-synuclein (αSyn) binds to
ubiquitin and forms proteinaceous cytoplasmic inclusions named
Lewy bodies. Over accumulation and post translational modification
of αSyn results in death of dopaminergic neurons [41-42]. Besides this
increased lipid peroxidation, as well as oxidative DNA and protein
damage is observed in substantia nigra [the brain area] that plays a
major role in the development of Parkinson's disease [43-45].

In Huntington’s disease the mutant huntingtin protein (mHtt)
aggregates and damage the retrograde transport of important
molecules such as BDNF. This damage in transport occurs as a result
of damaged molecular motors and microtubules [46] which causes
pathological changes and disease symptoms. Additionally altered
mitochondrial energy metabolism raises the production of free
radicals thus resulting in severe neuronal trauma in Huntington’s
disease [47].

In ALS, motor neurons develop proteinaceous inclusions in their
cell bodies and axons prior to their destruction. These inclusions
generally contain ubiquitin, and often incorporate one of the ALS-
associated proteins such as SOD1, TAR DNA binding protein
(TDP-43, or TARDBP) or FUS. Protein degradation pathways play a
crucial role in removing misfolded proteins thus preventing protein
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aggregation. Accumulation of ALS-specific proteinaceous inclusions
may be partly due to defects in protein degradation [48]. Evidences
from post-mortem tissues from ALS patients have revealed that
oxidative stress is the main causative factor responsible for
accumulation of oxidative damage to lipids, proteins, and DNA thus
suggesting a direct role in ALS progression [47,49,50].Other disorders
associated with oxidative stress and oxidative damage

Cardiovascular, neurodegenerative and oncological diseases are
likely to be the most studied pathological conditions associated with
oxidative stress. Since oxidation occur in all metabolically active, living
cells, and therefore oxidative stress is associated with many other
common disorders and conditions (Figure 1). The mechanisms behind
the development and progression of such conditions are diverse for
e.g. lungs, eyes and skin are naturally exposed to relatively high
amounts of oxygen as well as to air pollutants which makes them
vulnerable to oxidative damage. Heavy metals such as cadmium
increase the generation of reactive oxygen species which promotes cell
death [51]. However, the deficiency in exogenous antioxidant defence
also plays an important part and can cause problems with ocular
tissues [52,53].

Biomarkers
Several biomarkers have been reported as indicators of oxidative

stress which include oxidation products of lipid, DNA and protein [16,
54-79] (Table 3). These biomarkers indicate the exposure of various
antioxidant protective mechanisms to various oxidants in vivo [50].
Increase in oxidative stress in various pathologic conditions have
suggested the use of specific biomarkers for the development of new
diagnostic, therapeutic, and preventive strategies for delaying the
development of complications such as cancer, atherosclerosis and
coronary artery and neurodegenerative diseases.

Concluding Remarks and Future Perspective
Oxidative stress has been implicated in the etiology of several

chronic and degenerative diseases [80,81]. Pathological effects of ROS
are dealt by human body by utilizing the endogenous antioxidant
system (e.g. enzymes such as superoxide dismutase), and by the
consumption of antioxidants in the diet (e.g. flavonoids). Insufficient
antioxidant levels may accelerate the aging process and some of the
diseases associated with it.

The dependence of disease severity by an imbalance between
oxidants and natural defenses suggests that antioxidant therapy
represents a promising avenue for treatment. However successful
development of effective antioxidant therapies still remains a key goal.
Many novel approaches have been made and significant findings have
come to light in the last few years. The most recent is redox
proteomics which is a powerful tool to study redox regulation and
signaling which involves global overview of the cellular redox state
[82]. The molecular signatures of these short lived ROS/RNS
molecules imprinted on lipids and proteins bring about positive
oxidative stress, including redox signaling and activation of
transcriptional factors [82]. Analysis of the cellular redox state will not
only unveil the targets of reactive oxygen and nitrogen species but can
also be instrumental in giving valuable insights to counteract oxidative
stress. Additionally identification of novel biomarkers specific for
disease states arising as a result of oxidative stress will be invaluable in
providing information on possible mechanisms of diseases and new
potential ways of prevention and treatment.

Type of Biomarker Disease References

Ferric reducing ability of
plasma

Cardiovascular
Diseases [55]

Carbonyls

AD, Asthma,PD,
Diabetes
Cardiovascular
Diseases

[16,56,75, 76]

Lipid Peroxidation   

Malondialdehyde

AD, Asthma,
Atherosclerosis,
Cardiovascular
Diseases

[57,71,72]

F2-isoprostane

AD, Asthma,
Atherosclerosis,
Cardiovascular
Diseases, Diabetes,
Hypertension

[58,73,74]

4-Hydroxynonenal

AD, PD,
Atherosclerosis,
Cardiovascular
Diseases

[16,76]

Plasma vitamins   

Vitamin C Cardiovascular
Diseases [59]

Vitamin E Cardiovascular
Diseases [60]

Antioxidant enzymes   

Superoxide dismutase Cardiovascular
Diseases [61]

Catalase Cardiovascular
Diseases [62]

Glutathione peroxidase Cardiovascular
Diseases [63]

GSH/GSSG ratio in
erythrocyte

AD, Asthma,
Atherosclerosis,
Cardiovascular
Diseases, Diabetes,
PD

[64,77,78]

Prooxidant enzymes   

Xanthine oxidase Cardiovascular
Diseases [65]

NADPH oxidase Cardiovascular
Diseases [66]

Others   

Endothelial
microparticles

Cardiovascular
Diseases [67]

Endothelial progenitor
cells

Cardiovascular
Diseases [68,79 ]

Ischemia modified
albumin

Cardiovascular
Diseases [69]

Table 3: Biomarkers of oxidative stress
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