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Cells are isolated form the external world by a lipidic membrane. 
This barrier has also an important role in cellular communication 
because it is the target of all the extracellular stimuli acting on the cell. 
Several proteins, i.e. integral membrane proteins, are thus specialized 
in detecting extra cellular signals and translating the information to the 
cell, allowing a response. It has been suggested that around the 20% of 
proteins encoded in the human genome, code for membrane proteins 
[1]. Unfortunately, due to the difficulties in expression, just few of them 
have been deeply characterized at the structural level, i.e. about 40 of 
the just 400 unique membrane proteins solved by X-ray crystallography 
are human proteins. Encouragingly, in the last decade there was an 
exponential increase in the number of solved crystal structures of 
membrane proteins. This make us confident that in the forthcoming 
years, most of the membrane protein families will count with at least 
one member for which the structure is known. These numbers still 
represent a small portion of the entire human membrane proteome.

Membrane proteins are the principal players in a variety of signaling 
pathways, thus attracting a huge interest in therapeutic intervention, as 
the majority pharmaceutical compounds target membrane proteins, i.e. 
30 % of the FDA approved drugs. This huge number implies that, a 
gain of knowledge in the structure/function relationship is key in any 
rational drug design process. Unfortunately, the paucity of structural 
information limits extremely the use of structure-based drug design 
approaches. Thus computational biology tools, like homology modeling 
techniques have extensively been used to overcome these difficulties [2-
4]. Indeed, recent calculations using different techniques, showed that, 
as of today, around 1/3 of the human membrane proteome could be 
reliable modeled using homology modeling [5].

Once the structure of the protein is solved (or modeled), virtual 
molecular docking experiments should be carried out in order to 
characterize the binding cavities. Particularly challenging is to reach a 
correct orientation of the side chains in the binding site: for an accurate 
molecular docking this orientation is crucial. Unfortunately, in most of 
the cases, the low resolution of homology models cannot overcome this 
problem. The need of extensive membrane protein characterization, 
thus calls for alternative innovative approaches. One of the most 
popular approaches undertaken by the scientific community consists 
in using an extensive combination of computational biology techniques 
with molecular biology validating experiments. Indeed, analyzing the 
literature of the last few years, a careful reader can find more than 400 
research articles, in which combined approaches have been successfully 
used for the structure-function relationship characterization on 
membrane proteins.

Here I will briefly list the most relevant ones, at my advice, so 
the reader can have an overview on the variety of systems that were 
characterized, at different levels, using combined experimental/
computational approaches. Although not all of them were pure 
rational structure based drug design, the contributions point to a gain 
of insights into the structural determinants underlying the functioning 
of membrane proteins, a fundamental step needed for modern drug-
design approaches.

Homology modeling approaches were used to study the 
conformational changes between the holo and apo physiological states 

of the ATP-binding cassette (ABC) superfamily of proteins [6,7] and 
for characterizing the water and glicerol permeability and response 
to drug inhibitors of aquaporins [8,9], an argument clearly related to 
drug design. In order to study ligand gated ion channels like g-amino 
butyric acid type A receptors (GABAARs) and glycine receptors 
(GlyRs) modeling data were used to design mutagenesis experiments 
aimed at the characterization of glycosilation sites, found to be altered 
in disease states [10-12]. Also here, computational biology was used 
as a bridge between basic biology and medicine. In other interesting 
cases, homology models combined with electrophysiology and site-
directed mutagenesis experiments were used to characterize the open 
conformation and accessibilities of an important variety of voltage-
gated ion channels, characterizing their different activation states [13-
15]. Similar approaches were also used to characterize the activation 
mechanisms in cyclic nucleotide channels [16-20]. Using homology 
models in combination with other computational biology techniques, 
i.e. molecular dynamic and metadynamics (MTD), an alternative 
Na+ binding site of Sodium-Galactose Transporter (SGLT) symporter 
protein was predicted [21]. In the case of Acid-sensing ASIC channels 
[22] and calcium-activated anion channel bestrophin, homology 
models combined with mutagenesis experiments were used to 
characterize the interactions with toxins in the former, and to evaluate 
how specific mutations affect its capacity to bind calcium ions [23] for 
the latter. Another examples include membrane receptors, i.e. proteins 
that allow the cell to communicate with the external world: TLR8, a 
member of the Toll-like receptors (TLRs) family, were studied with 
the main aim of unraveling the interactions of the receptors with an 
antiviral compound, R848, involved in the activation of the full TLR8 
pathway [24]. Several groups have also successfully applied homology-
based structure modeling approaches of G-Protein couple receptors 
(GPCRs) to ligand-binding elucidation [22-43].

Summarizing, membrane proteins are of the utmost importance for 
the survival of any living being, thus a deep insight into the molecular 
mechanisms underlying their function is needed for a complete 
characterization of the way our cells exchange information with the 
environment. In the case of drug design protocols, the availability of 
membrane protein structures or, as we saw before, the possibility of 
gaining structural information by homology modeling combined with 
experiments, will allow a shift paradigm from ligand-based to target-
based drug design. The great gain of the structure-based methods over 
ligand-based methods, resides in the fact that the possibility of a detailed 
structural analysis may pave the way, not only, to the development of 
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‘classical’ orthosteric inhibitors, but will also open the door to novel 
solutions like the development of allosteric modulators.
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