Preclinical Blood Chemistry Safety Profile Studies of “Pijusaballi Rasa” on the Kidney Function After Chronic Administration to Male Sprague-Dawley Rats

Sony TA1, Saha N1, Chowdhury IH1, Tripura S1, Akter S1, Mumu M1, Khan MAA1, Sikder MM2* and Choudhuri MSK1

1Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh; 2Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan

ABSTRACT

Pijusaballi Rasa (PJB) is an Ayurvedic preparation used as a traditional medicine in the treatment of edema in the rural population in Bangladesh. The acute pharmacological test of PJB recorded no death or any signs of toxicity even at the highest dose of 4000 mg/kg body weight. To find out the effect of chronic administration of PJB on serum chemistry profile, it was administered chronically to the male Sprague-Dawley rats at a dose of 400 mg/kg. After 28 days of chronic administration of the PJB preparation, the serum chemistry profile, composed of a battery of tests, allowed for evaluation of several body systems and assessment of metabolic disturbances. The results of the effect of chronic administration of PJB on serum chemistry profile were as follows. There was a statistically highly significant (p = 0.003) decrease in the total protein in the serum of the male rats (9.45% decrease). There was a statistically highly significant (p = 0.010) increase in the albumin level in the serum of the male rats (24.66% increase). There was a statistically very highly significant (p = 0.001) decrease in the globulin level in the serum of the male rats (45.50% decrease). There was a statistically significant (p = 0.015) increase in the albumin/globulin ratio in the serum of the male rats (175.19% increase). There was a statistically significant (p = 0.014) increase in the uric acid level in the serum of the male rats (25.16% increase).

Keywords: Pijusaballi Rasa; Edema; Ayurvedic; Albumin; Globulin; Uric Acid

INTRODUCTION

Ayurvedic medicines have a reputation as decent and effective remedies for a number of diseases [1]. Currently, the World Health Organization (WHO) has officially recognized and recommended large-scale use of herbal (Unani and Ayurvedic) medicines, particularly in the developing countries, as an alternative system of medicine to deliver health-care services at the primary health-care level [2]. According to WHO, approximately 1.5 billion people around the world are now getting treated with these medicines [3]. They also have a good safety profile [4].

The use of herbal preparations without any standard dosage along with inadequate scientific studies on their safety profile has raised concerns on their toxicity [12]. That is why we developed this study to observe the effect of chronic administration of PJB to Sprague-Dawley rats at a high dose. The objective is to have a better understanding of the potential toxicological profile of the drug and to decide how justifiable the use of this drug is under the stated conditions. The study provides directions for further research as well.

Correspondence to: Md Mamun Sikder, Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793 Japan, Tel: +8801671826017; E-mail: mamunshikder1678@gmail.com

Received: Dec 22, 2019, Accepted: Jun 19, 2020

Copyright: © 2020 Sony TA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
MATERIALS AND METHODS

Drugs, chemicals, and reagents

For this research work to characterize the Kidney function profile, PJB was collected from Sri Kundeswari Aushadalaya Ltd, Chittagong. Ketamine injection was purchased from ACI Pharmaceuticals Limited, Bangladesh. All other reagents, assay kits, and chemicals used in this work were purchased from Human GmbH, Wiesbaden, Germany.

Experimental animals

Six-to-eight-week-old male Sprague-Dawley rats, bred and maintained at the animal house of the Department of Pharmacy, Jahangirnagar University, were used in this hematological experiment. These animals were apparently healthy and each weighed 50-70 g. The animals were housed in a well-ventilated, clean experimental animal house under constant environmental and adequate nutritional conditions throughout the period of the experiment. They were fed with rat chow prepared according to the formula developed at Bangladesh Council of Scientific and Industrial Research. Water was provided ad libitum and the animals were maintained at 12 hours day and 12 hours night cycle. All experiments on the rats were carried out in absolute compliance with the ethical guide for care and use of laboratory animals approved by Ethical Review Committee, Faculty of Life Sciences, Department of Pharmacy, Jahangirnagar University.

Experimental design

Acute toxicity study: The acute oral pharmacological test was performed as per the guidelines of Organization for Economic Co-operation and Development (OECD) for testing of chemicals with minor modifications (OECD Guideline 425) [13]. Sixteen male Sprague-Dawley rats (30-40 g body weight) were divided into four groups, each group comprising four animals. Different doses (1000, 2000, 3000, and 4000 mg/kg) of the experimental drug (PJB) were administered to the rats by stomach tube. The dose was divided into two fractions and given within 12 hours. Then all the experimental animals were observed for mortality and clinical signs of toxicity (general behavior, respiratory pattern, cardiovascular signs, motor activities, reflexes, and changes in skin and fur texture) at 1, 2, 3, and 4 hours and thereafter once a day for the next 3 days following PJB administration.

Chronic toxicity studies: Prior to the experiment, rats were randomly divided into two groups of eight animals each. One group was treated with PJB and another was used as control. The control animals were administered with distilled water only, at a volume same as the drug administered to the study group for 28 days. For all the pharmacological studies, the drugs were administered per oral route at a dose of 400 mg/Kg body weight [14]. After acclimatization, the Ayurvedic medicinal preparation was administered to the rats by intra-gastric syringe between 10 am and 12 am daily throughout the study period [15-19]. All the experimental animals were marked carefully on the tail, which helped to uniquely identify them. Using identification marks, responses were noted separately for a particular period prior to and after the administration [20].

Blood samples collection and preparation of serum: At the end of the 28 days treatment period, after 18 hours of fasting, rats from each group were anesthetized by administration (i.p.) of ketamine (500 mg/kg body weight) [21-28]. For biochemical analysis, blood samples were collected from posterior vena cava of rats into plain sample tubes for serum generation [29]. Serum was obtained after allowing blood to coagulate for 30 minutes and centrifuging it at 4000 rpm for 10 minutes using benchtop centrifuge (MSE Minor, UK). The supernatant serum samples were collected using dry Pasteur pipette and stored in the refrigerator for further analysis. All analyses were completed within 24 hours of sample collection [30,31].

Determination of biochemical parameters: Biochemical analysis was carried out on serum to assess the state of the liver [32] and kidney [33]. Biochemical studies involved analysis of parameters such as total protein [34], albumin (by Bromocresol green method) [35], creatinine [36], blood urea nitrogen (BUN) [37], and uric acid [38]. The absorbance values in all the tests were determined using spectrophotometer (UV/Visible Spectrophotometer Model No. UV-1601 PC.).

Statistical analysis: SPSS (Statistical Package for Social Science) Statistics 11.5 package (SPSS Inc., Chicago, IL) was used to carry out independent sample t-test to analyze the data. All values were expressed as mean ± SEM and p < 0.05, p < 0.01, and p < 0.001 were taken as the level of significance.

RESULTS

Acute pharmacological study

The drug (PJB) administered up to a high dose of 4000 mg/kg produced no mortality. Thus the LD50 (median lethal dose) value was found to be greater than 4000 mg/kg body weight. The animals did not manifest any sign of restlessness, respiratory distress, general irritation, or convulsion. Since PJB has been in the clinical use for treatment of diseases for many years, a limit test was performed in acute oral toxicity study. According to the OECD test guideline 425, when there is information in support of low toxicity or non-toxicity and low or no mortality nature of the test material, then the limit test at the highest starting dose level (4000 mg/kg body weight) was conducted. There were no signs of mortality and toxicity observed at 4000 mg/kg body weight. Therefore, it can be concluded that PJB when administered at single dose is non-toxic and can be used safely in oral formulations.

Effect of PJB on total serum protein, albumin, globulin content, and albumin/globulin ratio in male rats

After 28 days of chronic administration of the PJB preparation, the total protein, albumin content, and calculated ratio of albumin to globulins, termed the albumin/globulin (A/G) ratio, in serum were determined in the male rat group. In the study, the total protein content in the serum was decreased (9.45%) in the PJB-treated male rats. The decrease in total protein was statistically highly significant (p = 0.003). On the contrary, the albumin content was found to be increased (24.66%) in PJB-treated male rats, and it was statistically highly significant (p = 0.010), and
Table 1: Name of the ingredients/herbs used in the preparation of Pijusaballi Rasa.

<table>
<thead>
<tr>
<th>Name of ingredient</th>
<th>Scientific/common name</th>
<th>Parts used</th>
<th>Amount used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutaka (suddha parada)</td>
<td>Mercury (purified)</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Gandhaka (suddha)</td>
<td>Sulfur (purified)</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Abhra (abhraka bhasma)</td>
<td>Calcined purified mica ash</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Tara (rajata bhasma)</td>
<td>Silver ash (calcined silver)</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Lauha (bhasma)</td>
<td>Iron, cinnabar</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Tangana (suddha tankana)</td>
<td>Borax</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Rasanjana (daruharidra) (Ext.)</td>
<td>Berberis aristata</td>
<td>Extract</td>
<td>6 g</td>
</tr>
<tr>
<td>Maksika (bhasma)</td>
<td>Chalcopyrite</td>
<td>6 g</td>
<td></td>
</tr>
<tr>
<td>Lavanga (Fl.)</td>
<td>Syzygium aromaticum</td>
<td>Flower</td>
<td>6 g</td>
</tr>
<tr>
<td>Candana (svetacandana) (Ht. Wd.)</td>
<td>Santalum album</td>
<td>Wood</td>
<td>6 g</td>
</tr>
<tr>
<td>Musta (musta) (Rz.)</td>
<td>Cyperus rotundus</td>
<td>Rhizomes</td>
<td>6 g</td>
</tr>
<tr>
<td>Patha (Rt.)</td>
<td>Cissampelos pareira</td>
<td>Root</td>
<td>6 g</td>
</tr>
<tr>
<td>Jiraka (Sveta jiraka) (Fr.)</td>
<td>Caminnum cyminum</td>
<td>Flower</td>
<td>6 g</td>
</tr>
<tr>
<td>Dhanyaka (Fr.)</td>
<td>Coriandrum sativum</td>
<td>Flower</td>
<td>6 g</td>
</tr>
<tr>
<td>Samanga (Lajjalu) (Pl.)</td>
<td>Mimosa pudica</td>
<td>Plant</td>
<td>6 g</td>
</tr>
<tr>
<td>Ativisa (Rt.)</td>
<td>Aconitum heterophyllum</td>
<td>Root</td>
<td>6 g</td>
</tr>
<tr>
<td>Lodhira (St. Bk.)</td>
<td>Symphoxenus racemosus</td>
<td>Stem bark</td>
<td>6 g</td>
</tr>
<tr>
<td>Kutaja (St. Bk.)</td>
<td>Holarrhena antidysenterica</td>
<td>Stem bark</td>
<td>6 g</td>
</tr>
<tr>
<td>Indrayava (Kutaja) (Sd.)</td>
<td>Holarrhena antidysenterica</td>
<td>Seed</td>
<td>6 g</td>
</tr>
<tr>
<td>Tvaca (Tvak) (St. Bk.)</td>
<td>Cinnamminum zeylanicum</td>
<td>Stem bark</td>
<td>6 g</td>
</tr>
<tr>
<td>Jatiphala (Sd.)</td>
<td>Myristica fragrans</td>
<td>Seed</td>
<td>6 g</td>
</tr>
<tr>
<td>Cirabilla (Fr. P.)</td>
<td>Holoptelea integrifolia</td>
<td>Fr Patel</td>
<td>6 g</td>
</tr>
<tr>
<td>Kanaka bija (Suddha dhattura) (Sd.)</td>
<td>Datura stramonium</td>
<td>Seed</td>
<td>6 g</td>
</tr>
<tr>
<td>Dadimachada (dadima) (Fr. P.)</td>
<td>Punica granatum</td>
<td>Fr Patel</td>
<td>6 g</td>
</tr>
<tr>
<td>Samanga (Lajjalu) (Pl.)</td>
<td>Mimosa pudica</td>
<td>Plant</td>
<td>6 g</td>
</tr>
<tr>
<td>Dhakati (Fl.)</td>
<td>Woodfordia fruticosa</td>
<td>Flower</td>
<td>6 g</td>
</tr>
<tr>
<td>Kustha (Rt.)</td>
<td>Saussurea lappa</td>
<td>Root</td>
<td>6 g</td>
</tr>
<tr>
<td>Kesaraja Rasa (bhrangaraja) (Pl.)</td>
<td>Eclipta alba</td>
<td>Plant</td>
<td>Q.S. for bhavana</td>
</tr>
<tr>
<td>Chagi dugdha (ajaksira)</td>
<td>Goat’s milk</td>
<td>Q.S. for bhavana</td>
<td></td>
</tr>
</tbody>
</table>
there was a highly significant (p = 0.001) decrease (45.50%) in globulin content. As a result the increase (175.19%) in the A/G ratio from their corresponding control values was statistically significant (p = 0.015) (Table 2).

Effect of PJB on creatinine, BUN, urea, and uric acid level in male rats

The creatinine and BUN content in the serum were measured to carry out kidney function test. The levels of these two compounds can provide information about how effective the kidney function is. There was a statistically insignificant increase in the creatinine (7.58%; p = 0.205) content in serum in the PJB-treated male rats and also statistically insignificant increase of BUN level (11.23%; p = 0.200) in the serum was noted in comparison to the control group. The increase in BUN/creatinine ratio (3.49%) was also statistically insignificant (p = 0.702). It was observed that there was a statistically significant (p = 0.014) increase (25.16%) in serum uric acid content of PJB-treated male rats in comparison to the control male rats (Table 3).

DISCUSSION

The formulation of PJB is composed of Sutaka (suddha parada), Gandhaka (suddha), Abhra (abhraka bhasma), Tara rajata bhasma), Lauha (bhasma), Tanga (suddha tankana), Rasajana (daruharidra), Maksika (bhasma), Lavanga, Candana (svetacandana), Musta (musta), Patha, Jiraka (Sveta jiraka), Dhanyaka, Samanga (Lajjalu), Aritisa, Lodhara, Kutaja, Indrayava (Kutaja), Tvaca (Tvak), Jatiphala, Cirabilva, Kanaka bija (Suddha dhattura), Dadimachada (dadima), Samanga (Lajjalu), and Dhakati, Kustha (Rt.)–6 mg of each of these ingredients—and Kesara Rasa (bhrngaraja) and Chagi dugdha (ajaksira) Q.S. for bhavana [5-11].

Protein is the important part of all cells and tissues. The total protein test measures the total amount of two classes of proteins found in the fluid portion of blood: albumin and globulin. Albumin helps to prevent fluid leakage from blood vessels and globulins are an important part of immune system [39]. Drugs such as estrogens, oral contraceptives, and any drug toxic to the liver can cause a reduction of the total blood protein levels. The highly significant decrease of total protein in the PJB-treated experimental population can be due to liver diseases and kidney problems. Conditions such as hyperthyroidism and thiamine deficiency may also cause low protein levels in the body [40,41].

A serum albumin test measures the amount of protein in the clear liquid portion of the blood. This test can help determine if a person has liver disease or kidney disease, or if a person’s body is not absorbing enough protein [42]. The highly significant increase of albumin in the PJB-treated experimental population can also be due to dehydration, but the test is rarely used to diagnose dehydration as the other symptoms are clearer and more obvious. Drugs that increase albumin levels are insulin, growth hormones, osmotic diuretics, mannitol, and anabolic steroids [43-45].

Globulins are the key building block of antibodies. Globulins include gamma globulins (antibodies), beta globulins, alpha-2 globulins, and alpha-1 globulins and a variety of enzymes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>PJB</th>
<th>p value</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein</td>
<td>54.2500 ± 1.01330</td>
<td>49.1250 ± 1.00778</td>
<td>0.003</td>
<td>↓9.45</td>
</tr>
<tr>
<td>Albumin</td>
<td>27.8750 ± 0.78916</td>
<td>34.7500 ± 1.98881</td>
<td>0.010</td>
<td>↑24.66</td>
</tr>
<tr>
<td>Globulin</td>
<td>26.3750 ± 1.76208</td>
<td>14.3750 ± 2.33710</td>
<td>0.001</td>
<td>↓45.50</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>1.1054 ± 0.10556</td>
<td>3.0419 ± 0.60785</td>
<td>0.015</td>
<td>↑173.19</td>
</tr>
</tbody>
</table>

↑: increase, ↓: decrease; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>PJB</th>
<th>p value</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine</td>
<td>0.8250 ± 0.03660</td>
<td>0.8875±.02950</td>
<td>0.205</td>
<td>↑7.58%</td>
</tr>
<tr>
<td>BUN</td>
<td>11.0806 ± 0.53553</td>
<td>12.3248 ± 0.75419</td>
<td>0.200</td>
<td>↑11.23%</td>
</tr>
<tr>
<td>BUN/creatinine</td>
<td>13.5228 ± 0.76208</td>
<td>13.9944 ± 1.01103</td>
<td>0.702</td>
<td>↑3.49%</td>
</tr>
<tr>
<td>Uric acid</td>
<td>1.9875 ± 0.08332</td>
<td>2.4875 ± 0.15861</td>
<td>0.014</td>
<td>↑25.16%</td>
</tr>
</tbody>
</table>

↑: increase, ↓: decrease; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001
and carrier or transport proteins. Since the gamma fraction usually makes up the largest portion of the globulins, antibody deficiency should always come to mind when the globulin level is low [46,47]. There is a very highly significant decrease of globulin in the PJB-treated experimental population. Nephrosis, emphysema, acute hemolytic anemia, liver dysfunction, and hypogammaglobulinemia lead to low serum globulin level [43-45]. Considering the decrease in globulin content along with the noticeable lowering of total protein content in PJB-treated male rats, liver and kidney dysfunction might be a worthy point for further study. The liver can function adequately on 20% of liver tissue, thus early diagnosis by laboratory methods is difficult. A reversed A/G ratio may be a helpful indicator [46,47]. The normal A/G ratio is usually between 1.7-2.2. The significantly high A/G ratio suggests underproduction of immunoglobulins. An A/G ratio higher than 2.2 may indicate decreased thyroid function, low globulin, or an excess of glucocorticoids [43-45]. This can also prove to be an illuminating point for further scope of study.

Creatinine, a waste product from the muscles, is a breakdown product of creatine. A laboratory test is performed to measure the amount of creatinine in the blood to evaluate kidney function. In case of abnormal kidney function, creatinine levels will increase in the blood [48-54]. The increase in the creatinine level in the serum of the male rat could be due to renal insufficiency, decreased renal perfusion or reduced blood flow to the kidneys due to shock, dehydration, congestive heart failure, atherosclerosis, skeletal muscle trauma, ketonemia complications of diabetes, infection or autoimmune diseases, prostate disease, kidney stone, urinary tract obstruction, pyelonephritis, death of cells in the kidneys’ small tubes caused by drugs or toxins, or medications (inhibit tubular secretion of creatinine). Increased creatinine level in the blood suggests that kidney is having a compromised functional state [55-60]. PJB should be used with caution in those individuals who are carrying any of the risk factors mentioned above.

BUN test is often carried out to check kidney function. BUN increases by 10-20 mg/dl/day, if renal function is hindered; serum creatinine level is a better measure for renal function and BUN is reabsorbed at renal tubules [33]. Drugs such as diuretics, aminoglycoside antibiotic, ganglionic blocker, angiotensin-converting enzyme inhibitor, cephalosporins, and hypervitaminosis D increase BUN level in the serum and decrease the amount of urea excreted by the kidneys because of acute or chronic kidney dysfunction or failure, which in turn increases the serum urea level [43-45]. So PJB should be used with caution in those individuals with compromised kidney function as this causes the elevation in serum urea level.

Uric acid is a chemical created when the body breaks down substances called purines, which are nitrogen-containing compounds found in the body in substances such as DNA. Most uric acid is removed from the body by the kidneys and is excreted in the urine; the remainder is eliminated in the stool. If too much uric acid is produced or not enough is excreted, it can accumulate in the body and cause increased levels in the blood (hyperuricemia) [46,47]. There are drugs that can increase the level of uric acid in the body, for example, alcohol, ascorbic acid, aspirin, caffeine, cisplatin, diazoxide, diuretics, epinephrine, ethambutol, levodopa, methyldopa, nicotinic acid, phenothiazines, and theophylline [43-45]. The significant increase in the uric acid level in the serum of the PJB-treated population may be due to hypoparathyroidism, nephrolithiasis, polycythemia vera, and/or renal failure.

CONCLUSION
From the data obtained it can be concluded that PJB should not be administered chronically at a higher dose as it may cause kidney disease. Further studies should be done by reducing the dose administered.

ACKNOWLEDGEMENT
The authors thank Focused Research on Ayurvedic Medicine and Education (F.R.A.M.E.) Laboratory, Department of Pharmacy, and all faculty members and the technical staffs of the Department of Pharmacy, Jahangirnagar University, for their kind cooperation. The authors express their special thanks to Mr. Shaful Islam for ensuring a constant supply of animals and also for the proper maintenance and care of these animals all throughout the experimental period.

REFERENCES