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Abstract

Asthma is a chronic inflammatory disease with multifactorial disorder of the airways, and was associated with T
helper type 2 (TH2) cells. It is considered the results of complicated interactions between innate cells and structural
cells, including dendritic cells (DCs), epithelial cells, mast cells (MCs), basophils, eosinophils and group 2 innate
lymphoid cells (ILC2s), which finally sustains Th2 immunity in the pathogenesis of asthma. In this narrative review
the details of roles of important innate cells against asthma are discussed to facilitate the future study of asthma.
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Introduction
Asthma is a disease with various degrees of airflow obstruction and

airway hyperresponsiveness (AHR) in the conducting airways [1-4].
The development of the inflammation in asthmatic lungs is considered
caused by the release of various inflammatory mediators secreted by
the interaction of innate immune cells and structural cells. The
function of innate cells in asthma, including mast cells, basophils,
eosinophils, DCs, ILC2, has been studied using genetic methods,
antibody-based depletion strategies, as well as the functional cells
reconstitution experiments to make it clear of the roles and the
interactions between innate cells. In this review, roles of different
important innate cells in the pathogenesis of asthma and the
interactions of the innate cells are discussed to lead the clear
understanding of asthma.

Mast cells
MCs are derived from hematopoietic stem cells in the bone marrow,

which are important effector cells in the immune system [5]. Most
mast cells reside in tissues and survive from months to years. Mast cells
can be distinguished by their high content of electron-dense secretory
granules. Tissue MCs express the high affinity IgE receptor FceRI. Mast
cells are best known for their role in IgE-associated allergic disorders.
Cells’ surface-FcεRI-bound IgE complex, initiates a complicated
secretory response [6]. When binding with IgE, MCs can be triggered
to release diverse mediators in allergic reaction, including histamine,
serotonin, proteases, leukotrienes and cytokines, etc; some mediators
are stored in cytoplasmic granules like histamine, serotonin, and
proteases; while some lipid-derived mediators such as prostaglandins
and leukotrienes will be newly formed and released in few minutes
after allergen exposure; cytokines, chemokines, and growth factors will
need several hours to be secreted after MC activation. The specific
types of mediators secreted by mast cells can vary according to the
strength of the activation signal [7]. The release of mediators is
considered in inducing vasodilatation, and edema formation in airway.

Another important receptors expressed in surface of mast cells are
Toll-like receptors (TLRs). It has been reported that TLR ligands can
induce cytokine and chemokine production in mast cells [8-10]. Mast
cells also have [11] and IL-33 [12-14] receptors, which means that
TSLP and IL33 can activate MCs directly. Mast cells can secret IL-4
and IL-13, which promote Ig class switching and IgE production
[15,16]. Their production of IL-10 can limit skin inflammation during
contact dermatitis or following UV exposure [17]. Worth noted, Mast
cells can also express CD40L. This evidence highlights the possibility
that mast cells can drive further IgE production in responses to allergic
disorders, or in responses to parasites [18,19].

The role of MCs in allergic inflammation has been extensively
studied in mice models. In most of the mouse based models, mast cells
are observed to promote the asthma. Increased numbers of MCs in
airway smooth muscles were observed in these adult asthma models.
However, it remains unclear in neonatal models. In human, patients
with more severe asthma show a significant higher numbers of
chymase+mast cells in the proximal airway epithelium [20-22]. MC-
deficient mice (WBB6F1-KitW/Wv or C57Bl/6-KitW-sh/W-sh or
CPA3cre) and MC-reconstituted mice are applicable to study the
contribution of MCs to the pathogenesis of asthma [23-26]. Findings
from human studies and work in mast-cell knock-in mice indicate that
mast cells can promote local inflammation and directly or indirectly
enhance goblet cell metaplasia and airway tissue remodeling [27-30].
In the remodeling process, mast cells can contribute to the migration,
accumulation, and activation of T cells, DCs, and other cells of innate
immunity [31,32].

MCs have been shown to induce immunosuppressive effects
through their production of IL-10 and to limit skin inflammation
during contact dermatitis or following UV exposure [23]. MC-derived
IL-10 has also been shown to reduce B cell responses and antibody
production [24]. Moreover, MCs also express sialic acid-binding
immunoglobulin type lectins (Siglec)-8; a lectin shown to induce
apoptosis in eosinophils [25,26]. In MCs, Siglec-8 engagement fails to
induce apoptosis but inhibits inflammatory responses [26]. It is unclear
whether this function of MCs to limit inflammation is due to some
specificity of the models or truly represents an important function of
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these cells. It is clear that many factors derived from MCs themselves
or from other sources in the lungs of asthmatics can affect their
number and their distribution. However, which factors are the most
crucial in altering MC functions in vivo remains unknown. Also,
whether MCs can be specifically targeted or reduced in diseased tissues
in a safe way remains to be carefully addressed.

Basophils
Basophils which were discovered by Paul Ehrlich in 1879, are

traditionally considered phenotypically and functionally related to
mast cells, though in some situations, basophils and mast cells behave
differently in role of asthma [33-35]. Basophils express the high affinity
receptor FceRI and also produce mediators including histamine, Th2-
associated cytokines, and lipid mediators. In comparison of mast cells,
the lifespan of mature basophils is short and estimated to be 1 or 2
days [36].

Basophil development can be driven by IL-3 and TSLP [37,38].
Animal models have provided indications of contributions for
basophils in role of development or propagation of allergic airway
inflammation. An important role of basophils reported is that it is
observed involved in Th2 cell polarization in mice, and directly
promote optimal TH2 cytokine responses. Basophil depletion
experiments and basophil-deficient mouse strain provide powerful
evidence that the development of Th2 responses requires cooperation
between DCs and basophils [39-42]. It has been shown that the
depletion of basophils using antibodies against FceRI resulted in poor
Th2 responses [41].

Basophils have also been shown to be activated in an IgD-
dependent manner and alsoin IgE- and IgG- mediated activation
processes. Basophils can secret multiple cytokines and chemokines
after activation. For instance, IL-3 based activated basophils can
release cytokines (IL-4, IL-6) and chemokines (CCL3, CCL4, CCL12,
Cxcl2) in an IgE-independent manner in mice [37,43-47]. Following
IgE-mediated activation, IL-3 can enhance the production of IL-4 and
IL-13 from human basophils.IL-33 can also directly activate basophils
and enhance their effector functions. IL-33 promotes IL-4 and IL-13
production from basophil populations in a MyD88-dependent manner
[48-50].

Eosinophils
Eosinophils are considered important effector cells in asthma.

Mediators released by eosinophils are relevant to the disease process;
and removal of eosinophils is associated with an improvement in the
disease [51]. Eosinophils are defined as granulocytes, which develop in
the bone marrow from pluripotent progenitors in response to
stimulations-induced cytokines [52,53]. These cytokines can be
interleukin-5 (IL-5), IL-3 and granulocyte–macrophage colony-
stimulating factor (GM-CSF). Interleukin 3 (IL-3), IL-5 and
granulocyte-macrophage colony stimulating factor (GM-CSF) promote
eosinophil differentiation [53-57]. IL-5 is important for terminal
differentiation of the eosinophil precursor. Eosinophil migration from
the vascular space into the tissues is initiated by the interactions
between surface receptors with ligands on vascular endothelial cells
[58,59].

Eosinophils’ granules can store cytokines, cationic proteins and
enzymes, and release cytokines to regulate downstream signaling after
receive stimulations. Eosinophils can express multiple receptors,
including IL-5 receptor, CC-chemokine receptor 3 (CCR3), receptor

sialic acid-binding immunoglobulin-like lectin 8 (SIGLEC-8) in
human and SIGLEC-F in mouse [60-66]. Eosinophils can secrete a
number of lipid mediators and proteins, including major basic protein
(MBP), eosinophil-derived neurotoxin (EDN), eosinophil cationic
protein (ECP) and eosinophil peroxidase (EPO). MBP is toxic for
human respiratory epithelial cells and pneumocytes [67-70].

Eosinophils are used to define features of allergic asthma in humans
and animal models, and are considered an early source of Th2
cytokines in asthma. Allergen-induced IL-5 produced by Th2 cells or
ILC2s can induce eosinophils to mature [71-73]. Mature eosinophils
are released into the peripheral blood and enter lung tissues in
response to chemokines produced by airway epithelial cells with the
stimulation of IL-13 [74-76].

Eosinophils are important for airway remodeling in mouse model.
Exposure of Ddbl-GATA mice on a Balb/c background to an asthma
protocol showed that the absence of eosinophilscannot protect mice
from AHR development [61]. Evidence also shows that C-kit mutant
mice (WBB6F1/J-KitW/KitW-v/J) and CPA3-cre knockout mice
(C57BL/6-Tg(Cpa3-cre)4Glli/J) are easily acquire asthma [77,78].

Eosinophils are serving as effector cells and actively involved in the
adaptive immune response by modulating CD4+ T cells and asthma
features. Eosinophils can promote Th2 polarization via IL-4 [79,80],
and induce activation/migration of DCs via eosinophil-derived
neurotoxin (EDN) [81,82]. Several studies have showed that
Eosinophils induce the activation/proliferation of antigen-specific
memory T cells in mouse models of asthma and in patients of asthma
through the presentation of antigens by MHCII, which eventually
cause the production of Th2 cytokine [83-85].

Dendritic cells and epithelial cells
Dendritic cells (DCs) play critical roles in initiating and directing

immune responses, and are serving the main predominant MHCII
antigen-presenting cells in asthma. DCs involve in directing TH1
responses and determining the nature of T-lymphocyte differentiation
in response to allergen exposure [86,87]. DCs can secret a panel of
cytokines that can direct T-lymphocyte differentiation, including
IL-12, IL-10, IL-6, and TGF-b, but not IL-4. In lung, DCs have
different subsets, including two dominant subsets: cDCs, and moDcs.
In situation of inflammation, three distinct subsets of lung
conventional DCs (cDCs) can be recognized based on the expression
of specific cell surface markers: CD103+ cDCs; CD11b+cDCs; and
plasmacytoid (p) DCs. Monocyte-derived DCs (moDCs) are also
observed in lungs under inflammation [88-92].

DCs can determine the type of TH response to allergens, and drive
the differentiation of TH cells into TH2 cells, which are important in
allergic airway inflammation [89,93,94]. Th2 responses in asthma
require antigen presentation by DCs. First, DCs can capture inhaled
allergens and transport them in a chemokine CC receptor (CCR)7-
dependent way to the T cell. Second, during ongoing inflammation,
DCs contribute to inflammatory cell recruitment and gronchial
hyperresponsiveness (BHR) development. The subsets of lung DCs
presenting inhaled allergen to T cells are considered CD11b+cDCs and
moDCs. CD11b+cDCs are recruited forTh2 sensitization, and moDCs
are responsible for recruitment of inflammatory cells (Th2 cells and
eosinophils) to the lungs by producing chemokines. Airway epithelium
also involves in the process of allergens sensitization through secreting
mediators that activate immune cells against environmental triggers.
IL-1 is a typical mediator released by epithelia cells in lung [95].
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In murine models of asthma, IL-1 contributes to induce asthma
features. IL-1R triggers lung epithelial cells to promote the innate
immune response to natural. The pathway of Nlrp3–IL-1b is shown in
role of Th2 responses via the skin. IL-1a induces production of
granulocyte–macrophagecolony-stimulating factor (GM-CSF) and
IL-33, which is required for development ofTh2 immunity in vivo, and
controls the Th2 cascade [96-98]. ST2, the receptor for IL-33, can be
expressed in several innate cell types including DCs, macrophages,
basophils, MCs, and eosinophils. Thus epithelial cells are important in
cross talk between different innate cells. IL-33 is also shown to support
the survival these innate cells. Another important role of IL-33 is that
it can contribute to the expansion and activation of ILC2s. In patients
suffering from allergic asthma and children with severe treatment-
resistant asthma, tissue IL33was highly expressed [99-101].

Similar as IL-33, IL-25 is another important cytokine released by
epithelial and inflammatory cells in the airways of allergen-challenged
mice and human asthmatics. IL-25 contributes to Th2 immunity and
drive the expansion of ILC2s and granulocytic myeloid cells that
produce IL-5 and IL-13 in mice and humans. IL-25 also contributes in
orchestrating airway remodeling, and induces collagen by lung
fibroblasts to promote angiogenesis [102].

ILC2 cells
Innate lymphoid cells (ILCs), which are important in Th2 immunity,

can serve as sources of Th1, Th2, or Th17 cytokines. ILCs thus can be
generally referring to nuocytes and natural helper cells showing
morphologically similar ityas T cellsbut lack rearranged antigen
receptors. According to the sources they served, they have been named
ILC1, ILC2, and ILC3, respectively. ILC2s were initially discovered in
the peritoneal cavity, which are RORa-dependent ILCs. ILC2 includes
nuocytes, natural helper cells (NHCs) and innate helper 2 cells (Ih2s).
However, whether these cells are different subsets or the same cell at
different stages of development remains unknown [103,104].

ILC2 can express CD25 (IL-2Ra), CD90 (Thy1), CD117 (c-Kit),
CD127 (IL-7Ra), CD278 (ICOS), ST2 (IL-33R) and IL-17BR, and are
IL-25-responsiveand IL-33-responsive [105,106]. Human ILC2s also
express the receptor for lipoxin A4; which can decrease IL-13
production. ILC2 can secrete large quantities of cytokines, including
IL-5, IL-9and IL-13, which belongs to the type II immune response
against allergic asthma. ILC2 arise from a common lymphoid
progenitor in the bone marrow [107]. IL-7, IL-33, the transcription
factors Id2 and RORa are essential for their development and function.
The cells proliferate stimulated by IL-25 and IL-33, and other
pathogens such as helminths, viruses and fungi, is considered the
central step in type 2-mediatedimmunity. In response to IL-33, ILC2s
produce high amounts of IL-5.The role of ILC2s can induce lung
inflammation in response to aeroallergens or proteolytic antigens
[108,109]. Reconstitution of ILC2s into Rag/mice showed that ILC2s,
which are the major source of IL-5 and IL-13. In papain-induced
models, ILC2s transiently produce IL-9 that is dependent on IL-2
produced by adaptive immune cells. The depletion of ILC2s causes
lung repairmen and tissue recovery. ILC2 produces amphiregulin,
which linked to tissue remodeling and repair in asthma [110,111].

Conclusion
In mouse model of asthma, mast cells have been shown to promote

the transport of inhaled antigen by dendritic cells [112-115]. Although
mast cells have mainly been considered as asthma-promoting cells due

to their IgE-induced effects, recent data suggest that they might have
the potential suppressive function in inflammation due to the
complicated cross talk of the innate cells (unpublished data). In
response to inhaled allergens, cytokines including IL-33, IL-25, IL-1,
and GMCSF are released by epithelial cells. IL-33 and GM-CSF
released by epithelium will regulate ILC2 expansion, and lung DC
differentiation [13,14,116,117]. Mast cells will release histamine, IL-6,
and tumor necrosis factor (TNF) a to enhance cDC migration. Under
the stimulation, DCs drive the Th2 responses in the lungs, by
activating naive T cells to differentiate into effector Th2 cells. Then
basophils and eosinophils will start to work on Th2 polarization
induced by IL-4 [118,119]. Monocytes will produce chemokines to
trigger the immigration of eosinophils, basophils, mast cells and Th2
cells to the lung. The release IL-33 from epithelial cells in asthma
model and increase of IL-25 and IL-25R expression in basophils and
eosinophils, increased the proportion of ILC2. In the lung, ILC2 plays
a direct role in type 2 immune pathologies. Administration of
recombinant IL-25 or IL-33 induced the expansion of an ILC2
population. The production of IL-5 and IL-13 by ILC2 is necessary for
eosinophilia and mucus secretion. However, details about the cross talk
among innate cells are remaining unknown. ILC2s could, or not,
enhance eosinophil differentiation and survival is unknown. And the
roles of neutrophils and macrophages in asthma are still unclear.
Interaction occurring between lung DCs and ILC2s remains to be fully
addressed.
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